Computing intersection numbers of Chern classes

نویسندگان

  • Daniel J. Bates
  • David Eklund
  • Chris Peterson
چکیده

Let Z ⊂ Pr be a smooth variety of dimension n and let c0, . . . , cn be the Chern classes of Z. We present an algorithm to compute the degree of any monomial in {c0, . . . , cn}. The method is based on intersection theory and may be implemented as a numeric or as a symbolic algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chern numbers of smooth varieties via homotopy continuation and intersection theory

Homotopy continuation provides a numerical tool for computing the equivalence of a smooth variety in an intersection product. Intersection theory provides a theoretical tool for relating the equivalence of a smooth variety in an intersection product to the degrees of the Chern classes of the variety. A combination of these tools leads to a numerical method for computing the degrees of Chern cla...

متن کامل

4 J an 2 00 6 Intersection numbers with Witten ’ s top Chern class Sergei Shadrin

Witten’s top Chern class is a particular cohomology class on the moduli space of Riemann surfaces endowed with r-spin structures. It plays a key role in Witten’s conjecture relating to the intersection theory on these moduli spaces. Our first goal is to compute the integral of Witten’s class over the so-called double ramification cycles in genus 1. We obtain a simple closed formula for these in...

متن کامل

Chern classes and Characteristic Cycles of Determinantal Varieties

Let K be an algebraically closed field of characteristic 0. For m ≥ n, we define τm,n,k to be the set of m× n matrices over K with kernel dimension ≥ k. This is a projective subvariety of Pmn−1, and is called the (generic) determinantal variety. In most cases τm,n,k is singular with singular locus τm,n,k+1. In this paper we give explicit formulas computing the Chern-Mather class (cM ) and the C...

متن کامل

On Generalized Sethi-vafa-witten Formulas

We present a formula for computing proper pushforwards of classes in the Chow ring of a projective bundle under the projection π : P(E )→ B, for B a non-singular compact complex algebraic variety of any dimension. Our formula readily produces generalizations of formulas derived by Sethi,Vafa, and Witten to compute the Euler characteristic of elliptically fibered Calabi-Yau fourfolds used for F-...

متن کامل

Intersection numbers with Witten’s top Chern class

The first conjecture involves moduli spaces of stable curves and certain 2-cohomology classes on them, called –classes. The intersection numbers of powers of the – classes can be arranged into a generating series that is claimed to be a solution of the Korteweg–de Vries (or KdV) hierarchy of partial differential equations. This conjecture was first proved by M Kontsevich in [12]. At present the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2013